Periodic  Table of the Elements
  << BACK | PERIODIC TABLE | ALPHABETICAL LIST >>Info & DownloadsADDITIONAL INFO
DYSPROSIUM
to Elements Alphabetical Listing
Atomic Number:

66

Atomic Symbol:

Dy

Atomic Weight:

162.50

Electron Configuration:[Xe]6s24f10
Total Isotopes47
Total Isomers11
Radioactive Isotopes29
Stable Isotopes7
X-Ray Energies
45.99
52.29
LL5.74
6.49
Mz1.00
1.29

 View Nuclear Periodic Table 
 View Isotopic & Isomeric Data 

History

(Gr. dysprositos, hard to get at) Dysprosium was discovered in 1886 by Lecoq de Boisbaudran, but not isolated. Neither the oxide nor the metal was available in relatively pure form until the development of ion-exchange separation and metallographic reduction techniques by Spedding and associates about 1950. Dysprosium occurs along with other so-called rare-earth or lanthanide elements in a variety of minerals such as xenotime, fergusonite, gadolinite, euxenite, polycrase, and blomstrandine. The most important sources, however, are from monaziate and bastnasite. Dysprosium can be prepared by reduction of the trifluoride with calcium.

Properties

Element DisplaysThe element has a metallic, bright silver luster. It is relatively stable in air at room temperature, and is readily attacked and dissolved, with the evolution of hydrogen, but dilute and concentrated mineral acids. The metal is soft enough to be cut with a knife and can be machined without sparking if overheating is avoided. Small amounts of impurities can greatly affect its physical properties.

Uses

While dysprosium has not yet found many applications, its thermal neutron absorption cross-section and high melting point suggest metallurgical uses in nuclear control applications and for alloying with special stainless steels. A dysprosium oxide-nickel cermet has found use in cooling nuclear reactor rods. This cermet absorbs neutrons readily without swelling or contracting under prolonged neutron bombardment. In combination with vanadium and other rare earths, dysprosium has been used in making laser materials. Dysprosium-cadmium chalcogenides, as sources of infrared radiation, have been used for studying chemical reactions.

Cost

The cost of dysprosium metal has dropped in recent years since the development of ion-exchange and solvent extraction techniques, and the discovery of large ore bodies. The metal costs about $300/kg in purities of 99+%.


Sources: Los Alamos National Laboratory; CRC Handbook of Chemistry and Physics; American Chemical Society
Element image from www.element-collection.com used with permission
« BACK | PERIODIC TABLE | ALPHABETICAL LIST | HOME »Top of Page
Join Today!
.:: Radiochemistry.org© - 2003 ::.