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Fi;. 1. Fflect of shear rate on intrinsic viscosity of polystyrene fractions.
Solvent: benzene; temp,: 25°C; € =0.03-0.05.

Bueche recognized that the coils are deformed in flow but was

obliged to neglect the distinction between the natural and de-
rmed states in his treatment. This omission has led Peterlin and
Copict to speculate that the deformation and rotation had com-
nsating effects and that if Bueche had not neglected this feature,
e probably would not have found a dependence on \c]cn:ity
adient.
* The present writer has also treated this problem starting with
ntially the same type of equations as those used by Rouse,
ritten, however, for the general case where the perturbations
sulting from all the components of the velocity gradient tensor
e considered. The solution is initially determined in the polymer
il coordinate system but is transformed into laboratory co-
dinates since it is in terms of the latter that the steady state
scosity is usually measured. It is found that in the general case,
there is a dependence of steady-state simple shear viscosity on
velocity gradient. In the case where all the relaxation times have
nearly the same value, the rotation and distortion compensate
for each other; the effect predicted by Peterlin and Copic is then
btained and there is no variation of intrinsic viscosity with
velocity gradient.

If the relaxation times given by Zimm® for the non-free-draining
tase are used, the ratio of intrinsic viscosity at any velocity gradi-
fnt K to the value obtained as K—0, is given as

N
/[ Jo=6.8910% E i/ (14 K2ri2)
1

N N
+E;¢E K/ (14K P/ Z 7/ (1478K3)},
=1 k=]

when the relaxation times are 7ix=Mn[7n]o/0.586RTA;’ and the
P+’ values are given by Zimm ef al.® Equation (1) is shown plotted
I Fig. 1 for two fractions of polystyrene dissolved in benzene at
35°C and compared with experimental values given by Sharman
Ifi al.7 The agreement is fairly good, considering that there is no
adjustable parameter in the ratio [(#1/[nJ.
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On the Infinite Multiplication Constant and
the Age of the Uranium Minerals

P. K. Kuropa
Department of Chemistry, University of Arkansas, Fayelteville, Arkansas
{Received October 12, 1956)

T has recently been pointed out by the author! that the values

of the infinite multiplication constant, k., of the uranium
minerals can be calculated according to the nuclear reactor
theory?;

ka=epfn S

where, e is the fast fission factor, p is the resonance escape proba-
bility, fis the thermal utilization factor, and 5 is the number of
fast neutrons available per neutron absorbed by uranium.

The values of p, f, and k. of a total of 20 samples of uranite,
pitchblende, briggerite, nivenite, and clevite, of which complete
chemical analyses are available in the literature,-® have been
calculated and the results are summarized in Table 1.

TauLE 1. Caleulated values of p, f, and k,, of the uraninites,

l)
No. Locality P F; ky (U+40.36 Th)
(1) Placer de Guadalupe, Mexico 0.08 0.03 0.003 0.0046
(2) Black Hawk, Colorado 0.30 040 036 0.009
(3) Kirk Mine, Colorado 0.15 019 0038 0.0115
(4) lizaka, Japan (clevite) 0.10 0.006 0.001 0.0136
(5) Hale’s Quarry, Connccticut 0.12 030 0048 0.040
(6) Blanchville, Conneeticut 0.13 0.91 0.16 0,052
(7) Boqueirio, Brazil 0.20 0.21 0.06 0.067
(8) Johanngeorgenstadt, Saxony 0.47 0.93 0.58 0.084
(9) Shinkolobwe, Katanga 0.08 0.20 0.021 0.084
(10) Morogoro, I- Africa (0.22)= 0.08 (0.023) 0.088
{11) Xigue-Xique, Brazil 0.40 0.21 0.11 0.102
(12) Gustav's Mine, Norway 016 0,09 0.018 0.123
(briggerite)
(13) Lac Pied des Monts, Quebec (0.22)* 0,14 (0.040) 0.148
(14) Wilberforee, Ontario 16 0.02 0.004 0.157
(15) Baringer Hill, Texas (nivenite) 0.33 0.007 0.003 0.163
(16) Arendal, Norway (clevite) 0.22)= 0.007 (0.002) 0.182
(17) Great Bear Lake, Canada 0.37 0.08 0.041 0.202
(18) Ingersoll Mine, South Dakota 0.09 0.08 0.010 0.226
{19) Winnipeg River, Manitoba (0.22)« 0.07 (0.020) 0.261
(20} Sinvaya pala, Karelia, USS.R. 0.29 0.024  0.009 0.30

* The values of p cannot be calculated, since the water contents of the
minerals are unknown. An assumed value of # =0.22 (an average value of p
of the 16 samples of minerals) has been used for the calculation of &..

In calculating the values of f, certain relative abundance pat-
terns of the rare earths elements in the minerals had to be as-
sumed, since the analyses of the individual rare earth elements
were not available. The relative abundance pattern of the rare
earths in igneous rocks was taken to be similar to that in the
uranium minerals. Whenever the analytical results were expressed
as the sum of two constituents, the weight ratio of the two was
assumed to be 1 to 1.

Since the trace constituents of the minerals, of which quanti-
tative determinations had not been made, may also absorb con-
siderable fractions of the total neutrons available, the true values
of f and k., may be somewhat lower than the values given in
Table I.

The resonance escape probability, p, depends upon the ratio
of the moderator to uranium (fuel) in the system. H;O is by far
the best moderator available in the uranium minerals.

The infinite multiplication constant, k., is plotted against the
Pb/(U+0.36 Th) ratio in Fig. 1.

It appears that the following rule holds; the greater the age
of the mineral, the smaller the value of £, although the minerals
with small values of k. are not necessarily old.

A number 'of the rare earths elements have extremely large
neutron absorption cross sections and the values of f are almost
entirely dependent upon the rare earths contents of the minerals.
The old minerals are always associated with considerable amounts
of the rare earths, although the minerals with high rare earths
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Fic. 1. Interrelationship between k. and Pb/ (U40.36 Th)
of the uranium minerals.

contents are not necessarily old. It is probably worthy of note
that the interrelation becomes even more evident, if the
(Y,Er):0,/U ratios are plotted against the Pb/(U+0.36 Th) ra-
tios, while the relationship is not clear between the (Ce,La).0,/U
ratios and the Pb/(U+0.36 Th) ratios.

This investigation was made possible by support from the U. S.
Atomic Energy Commission.
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Nature of the Free Electron Approximation:
The Simple Example of the H,* Ion

James F. Horxig,* WaLTER HUBER, Axp Hans Kunx

Tustitute of Physical Chemistry, The University of Marburg,
Marburg, Germany

(Received July 20, 1956)

HE type of free electron model used in this laboratory may
be viewed as depending on four special assumptions:

(I) Each one-electron wave function y may be approximated
satisfactorily by a product y=Ff, where F depends on the
coordinate along the molecular chain, i.e., the zig-zag line of the
carbon atom skeleton, and f on the coordinates lying on a surface
orthogonal to this line.

(II) The factor fis common to all states of the = electron, so
that the ith state is ;= F:f.

(IIT) The functions F; are eigenfunctions of the one-dimensional
Schroedinger equation for an electron in a certain assumed
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potential ¥, where ¥V depends only on the coordinate along the
molecular chain.

(IV) The energy of the ith state is E;=Eri+E;. Here Er, i5
the eigenvalue associated with Fy, and E; is the average kinetjc
energy associated with the degrees of freedom perpendicular to the
molecular chain.

The free electron model is useful because very simple assumed
forms of V yield remarkably good excitation energies. In the
simplest applications, ¥ has been taken as constant along the
molecular chain, rising to infinity at the ends.

In order to obtain detailed information about the effective
potential V appropriate for = electrons, and to test assumptions
(I) to (IV) critically in a simple case, we have applied the free
electron approximation to the states of the Ha* ion with =-type
symmetry. For the normalized wave function we take

4
¢=F(x)f(p.¢)=F(x)g—_.(@p cosge?I? (0
(x, p, v are cylindrical coordinates about the bond axis, and 8 is an
adjustable constant; F(x) is symmetrical in x in the 2p=-bonding
state, antisymmetrical in the 2 pr-antibonding state). The function
F(x) and the value of 8 are found by minimizing (¢|H|y). The
minimization was first carried out with respect to F(x) and then,
by repeating the treatment for various values of 8, with respect to
8. The problem of finding the function F (x) which minimizes
(¢|H|y) for a given value of 8 may be reduced to finding the
solution of the Schroedinger equation

d*F  8xim
FERITE
Here V(x)=(f|U|f) may be viewed as the average, over a plane

normal to x, of the electrostatic interaction, U(x,p), between the
electron and the two protons, and

Ep=(¢|H|¢¥)—Er, 6]

where E; is the average kinetic encrgy associated with coordinates
pand ¢ and the function f.

We have solved Eq. (2) with the aid of an analog computer
which will be described elsewhere. The lowest eigenvalue corre-
sponds to the 2pm-bonding state, the next to the 2pw-antibonding
state. The energies of these states are given in Table I. For com-
parison we also list the exact values as calculated by Teller, and
the values obtained for a LCAO calculation using 2p functions and
minimizing (4| [¢) with respect to an effective nuclear charge.

Clearly the energy values are very satisfactory, indicating the
validity of assumption (I) in this case. Similarly, the concept that
excitation may be associated with the degree of freedom along the
bond axis [assumption (I1)]is justified by the identical values pf
8 in both states. Assumptions (IIT) and (IV) are then justified in
this case by Eqgs. (2) and (3).

It may be shown that the effective potential V(x) calculated
here for a nuclear charge of unity and interatomic distance of
4.32 A differs only by a scale factor from the V'(x) appropriate for 2
nuclear charge of 3.25 (Slater value for a 2p electron in carbon)
and an interatomic separation of 1.33 A (carbon-carbon double

[Er—V(x)]F=0. (2)

‘TasLE [, Energy of 2pw states of He*

Calculated for interatomic distance of 4.32 A; energy
(including contribution of nuclear repulsion)
in units of 10711 erg.
LCAO
minimized
with respect
oy effective

electron gas nuclear

modle exact charge

Evending —0.56(8 =1.10\) —0.58 —-D.SSg

Eantibonding —0.40(8 =1.10A) —0.42 —0.416

Eantibonding =~ Ebonding 0.16 0.16 0.137
————




